All Saints' School Calculation Policy

The following calculation policy is based around the requirements and expectations of the National Curriculum 2014.

Its aim is to provide a smooth progression between year groups and teacher helping children to build on the skills that they develop during their time at All Saints'.

The National Curriculum for mathematics aims to ensure that all pupils:

- become fluent in the fundamentals of mathematics, including through varied and frequent practice with increasingly complex problems over time, so that pupils develop conceptual understanding and the ability to recall and apply knowledge rapidly and accurately
- reason mathematically by following a line of enquiry, conjecturing relationships and generalisations, and developing an argument, justification or proof using mathematical language
- can solve problems by applying their mathematics to a variety of routine and non-routine problems with increasing sophistication, including breaking down problems into a series of simpler steps and persevering in seeking solutions

The National Curriculum 2014 requires all children to master the skills that they are developing before moving onto the next stage of their learning. So whilst the following information will be set out by year group it is important to remember that all children will need to be taught relative to their current level of attainment before moving on to the next objective.

Addition - Year 3			
Objective	Concrete	Pictorial	Abstract
add with up to three digits, using formal written methods of columnar addition Without Regrouping	Using manipulatives such as place value counters, Cuisenaire rods, place value blocks, Numicon children line up hundreds, tens and ones. $245+313=558$ Children are encouraged to write the calculation alongside the representation	Children are encouraged to write down the calculation similar to how it been modelled They can then move on to using a layout similar columnar addition	They move on to just using the formal method, they may need to use an expanded step before being completely secure with their understanding of the concrete method. $\begin{array}{r} 200+40+5 \\ +\quad 300+10+3 \\ \hline 500+50+8 \\ \hline \end{array}$

With Regrouping	$475+343=818$ Once the counters are combined, the children can exchange 10 tens counters for a hundred counter giving them the information they need to complete the addition calculation. Being able to see this in front of them helps in their understanding.	Children are given the opportunity to model the calculation without counters circling the counters and then showing where they can be exchanged This can then be extended to modelling the written method alongside the calculation	Children may require an expanded step before moving onto the concrete method $\begin{array}{r} 400+70+5 \\ +\quad 300+40+3 \\ \hline 700+110+8 \\ \hline \end{array}$ Children complete the formal method with exchanging where necessary. $\begin{array}{r} 475 \\ +\quad 343 \\ \hline \hline 818 \\ \hline x \end{array}$
Calculations can be provided to the children where exchanging can happen in one or all of the columns. Usually children progress from exchanging with the one to tens to hundreds and then multiple columns.			
VOCABULARY addition add, more, and make, sum, total, altogether, double, near double, half, halve, one more, two more ... ten more ... one hundred more, how many more to make ...? how many more is ... than ...? how much more is ...? equals, is the same as, number bonds/pairs/facts, missing number, tens boundary, hundreds boundary, addend			

VOCABULARY

addition add, more, and make, sum, total, altogether, double, near double half, halve one more, two more... ten more... one hundred more how many more to make ...? how many more is ... than ...? how much more is ...? equals, is the same as, number bonds/pairs/facts, missing number, ones boundary, tens boundary, hundreds boundary, thousands boundary, tenths boundary, addend

Addition - Year 5/6			
Objective	Concrete	Pictorial	Abstract
add whole numbers with more than 4 digits using formal written methods	See Year 4 and extend columns where necessary	See Year 4 and extend columns where necessary	$\begin{array}{r} 144562 \\ +502489 \\ \hline \frac{547051}{1 x 1} \end{array}$
add several numbers of increasing complexity, including adding money, measure and decimals with different numbers of decimal points	See Year 4 and extend rows if necessary	See Yr 4 and extend rows here necessary	Children can apply the formal method to suit the needs of the calculation $\begin{array}{r} £ 14.45 \\ £ \quad 3.47 \\ +£ 524.89 \\ \hline £ 542.82 \\ \hline \not x \not 2 \end{array} \begin{array}{r} 218.452 \\ 73.820 \\ +\frac{1524.800}{1817.072} \end{array}$ Children can insert place holders to aid with the lay out of the calculation
addition add, more, an how many more is ... th boundary, thousands b	ke, sum, total, altogether, double, near do .? how much more is ...? equals, is the sam dary, etc ... tenths boundary, hundredths bat	VOCABULARY If, halve one more, two more... ten more... one hundred umber bonds/pairs/facts, missing number, ones bound ry, addend	ore how many more to make ...? tens boundary, hundreds

Column subtraction (with exchanging / regrouping)

Model the process of $745-317$ using base 10 or PV counters. Ensure the language of exchanging an
d regrouping is used.

Step 1:

Start with the 1's column. Can 7 be taken from 5 easily? No - then exchange a ten for ten ones and regroup them into the correct column.

Step 2:

Once this step is completed children can subtract / take off the relevant counters from each column.

Carefully chosen questions can extend children to exchanging and regrouping next in the tens column, then in both the tens and ones columns as appropriate.

They could also decompose a number

Children to model using their whiteboards:

Step 1:
Set up calculation

Step 2:

Exchange and regroup 10's for 1's

Step 3:

Cross out ones to indicate subtraction has taken place, write new amount of ones underneath and then

focus on tens column exchanging and regrouping a hundred for ten tens

Step 4:

Cross out the tens to show subtraction, write the amount left underneath and then repeat with the
 hundreds column to complete the calculation.

Children my need to use an expanded step before being completely secure with their understanding of the concrete method.

VOCABULARY

minuend, subtrahend, equal to, take, take-away, less, minus, subtract, leaves, distance between, how many more, how many fewer/less than, most, least count back, how many left, how much less is...difference, count on, strategy, partition, tens units, exchange, decomposition, regroup, how many have gone? one less, two less, ten less ... one hundred less how many fewer is ... than ...?

Subtraction - Year 4			
Objective	Concrete	Pictorial	Abstract
Subtract numbers with up to 4 digits using the formal written methods appropriate of columnar subtraction where appropriate Year 4 subtraction with up to 4 digits.	See Year 3 with extension into the thousand's column	See Year 3 with extensions into the thousand's columns	$\begin{array}{r} 20^{9} 25 \\ -\quad 154 \\ \hline 148 \\ \hline 1 \end{array}$
Introduce decimal subtraction through context of money	See Year 3 with extension into the tenths and hundredths columns	See Year 3 with extensions into the tenths and hundredths columns	
VOCABULARY minuend, subtrahend, equal to, take, take-away, less, minus, subtract, leaves, distance between, how many more, how many fewer/less than, most, least count back, how many left, how much less is...difference, count on, strategy, partition, tens units, exchange, decomposition, regroup, how many have gone? one less, two less, ten less ... one hundred less how many fewer is ... than ...? Inverse, ones boundary, tens boundary, hundreds boundary, tenths boundary			

Subtraction - Year 5/6			
Objective	Concrete	Pictorial	Abstract
Subtract with at least 4 digits, including money and measures. Subtract with increasingly large and more complex numbers and decimal values (up to 3 decimal place).	See Year 3 with extensions into the relevant columns where necessary	See Year 3 with extensions into the relevant columns where necessary	205.419 kg \qquad $86 \cdot 27$ kg When the amount to subtract is different in size then children can put in a 0 to help complete the calculation
minuend, subtrahend, equal to, take, take-away, less, minus, subtract, leaves, distance between, how many more, how many fewer/less than, most, least count back, how many left, how much less is...difference, count on, strategy, partition, tens units, exchange, decomposition, regroup, how many have gone? one less, two less, ten less ... one hundred less how many fewer is ... than ...? Inverse, ones boundary, tens boundary, hundreds boundary etc ... tenths boundary, hundredths boundary			

When introducing any new calculation method, it is always important to start with questions that involve no regrouping before introducing it slowly and only with one column at a time. This will help to build the children's confidence in the method leading to a more secure understanding.

VOCABULARY

multiplication, multiply, multiplied by, multiple, factor, groups of, times, multiplier, multiplicand, product, once, twice, three times ... ten times repeated addition, array, row, column, number patterns, multiplication table, multiplication fact,

Multiplication - Year 4			
Objective	Concrete	Pictorial	Abstract
Grid method recap from Year 3 for 2 digits $x 1$ digit moving on to 3 digit $\times 1$ digit number Multiplying 3-digit numbers by 1 digit Multiply two-digit and three-digit numbers by a one-digit number using formal written layout	Place value counters can be used to explore the calculation. As the calculation is 126×4 then there needs to be 4 rows. The number is partitioned and the rows are created with the place value counters Any exchanges are then made before adding up the rows. Giving the final answer	Children can represent their work with place value counters in a way that they understand. They can draw the counters using colours to show different amounts or just use the circles in the different columns to show their thinking as shown below (as an extension of what they learnt in Yr 3) The grid method can be used to support the expanded form and help children to recognise the links between the two	Children can use the grid method to calculate e.g. 4×124 $400+80+16=496$ (This could be added using the column method although quick mental additions would be more efficient) Before moving on to a more formal method: $\begin{array}{r} 124 \\ \times \quad 4 \\ \hline 16 \\ \hline 80 \\ \hline 8 \times 4) \\ 400 \\ \hline 496 \\ \hline \end{array}$ then the compact method: $\begin{array}{r} 124 \\ \times \quad 4 \\ \hline 496 \\ \hline x \end{array}$

Multiplication involving decimals (inc. money) Multiply decimal up to 2 decimal places by a single digit.	Use manipulatives to calculate the amount. Make exchanges where necessary. Total up the final amount. Again, use the written example alongside the manipulative wherever possible. $£ \quad p$	The grid method could be used to provide extra support however teachers and children must be wary of how the children record the amounts, or convert amounts, to ensure mistakes are not made.				Teachers to ensure the correct placement of the 4 in terms of a decimal caclulation			
	¢	x	£2	30p	2p				
		4	£8	120p or £1.20	8p				
	$£ 2.32 \times 4=£ 9.28$								

VOCABULARY
multiplication, multiply, multiplied by, multiple, factor, groups of, times, multiplier, multiplicand, product, once, twice, three times ... ten times repeated addition, array, row, column, number patterns, multiplication table, multiplication fact, square, squared, cube, cubed

Multiplication - Year 5/6			
Objective	Concrete	Pictorial	Abstract
Column multiplication for 3 and 4 digits $\times 1$ digit Multiply numbers up to 4-digits by a onedigit number using the format written method, (including long multiplication for 2-digit numbers - see below)	Children can represent their work with place value counters in a way that they understand. It is important to remind children to calculate first with the ones column and then move up to help support understanding of the compact method. (see Yr 4)	They can draw the counters using colours to show different amounts or just use the circles in the different columns to show their thinking as shown below (as an extension of what they learnt in Yr 4)	Children can use the grid method to calculate e.g. $8000+1600+80+12=9692$ This could be added using the column method or mentally) Before moving on to a more formal method: $\begin{array}{rr} 2423 & \\ \times \quad 4 \\ \hline 12 & (3 \times 4) \\ 80 & (20 \times 4) \\ 1600 & (400 \times 4) \\ 4000 & (2000 \times 4) \\ \hline 9692 & \\ \hline \end{array}$ then the compact method: $\begin{array}{r} 2423 \\ \times \quad 4 \\ \hline 9692 \\ \hline x \not 7 \end{array}$

VOCABULARY

multiplication, multiply, multiplied by, multiple, factor, groups of, times, multiplier, multiplicand, product, once, twice, three times ... ten times repeated addition, array, row, column, number patterns, multiplication table, multiplication fact, square, squared, cube, cubed

Division - Year 3			
Objective	Concrete	Pictorial	Abstract
division using known multiplication facts	Children can use Numicon/ Base 10/Place value Counters to identify division facts $24 \div 4=6$ Numicon can be used to support known multiplication facts if children are struggling.	$36 \div 3=12$ Children can use the part - whole model Or draw a number line to help solve the calculation Children can use the dots in circles method as well to support but should be encouraged to count in multiples and move on to a more efficient method	Begin with divisions that divide equally with no remainder $\begin{array}{\|l\|l} 4 & 3 \\ 2 & 3 \\ 3 & 6 \\ \hline 9 & 3 \end{array} 6$ Children should be aware that a 0 is used to keep place value, if the number is not divisible. $\begin{array}{lll} 1 & 0 & 2 \\ 4 & 4 & 0 \end{array}$

VOCABULARY

dividend, divisor, quotient, division, dividing, divide, divided by, divided into, left, left over, remainder, grouping, sharing, share, share equally, one each, two each, three each ... ten each, group in pairs, threes ... tens, equal groups of, doubling, halving, array row, column number patterns, division fact, inverse,

VOCABULARY

dividend, divisor, quotient, division, dividing, divide, divided by, divided into, left, left over, remainder, grouping, sharing, share, share equally, one each, two each, three each ... ten each, group in pairs, threes ... tens, equal groups of, doubling, halving, array row, column number patterns, division fact, inverse

divide numbers up to 4 digits by a twodigit whole number using the formal written method of long division, and interpret remainders as whole number remainders, fractions, or by rounding, as appropriate for the context	By the time children learn this met quickly and effectively. When starting to approach Long d Taking out the calculation worries Divide 2 into 18, place 9 in the quotient The same method can then be with long division.	d they should be secure in their understanding sion starting with a single digit as the divisor can n help to make the children more comfortable 2. MULTIPLY AND SUBTRACT $\begin{gathered} 100 \\ 2 \\ 2 \longdiv { 5 8 } \\ \frac{-4}{1} \end{gathered}$ To find the remainder multiply 2 by 2 and get 4. Write that underneath the tens column and subtract it to get the remainder of 1 ten ansferred to two digit dividends. Using this link	short division an how to complete calculations elp children become familiar with the method. 3. DROP $\begin{array}{r} \mathrm{T} O \\ 2 \\ 2 \longdiv { 5 8 } \\ \frac{-4}{1} \downarrow \end{array}$ Next drop down the 8 ir, uוש column and write it next to the 1 in the tens. Combine them and you have 18 ill help children to become more secure
dividend, divisor, q each ... ten each, gr	, division, dividing, divide, divided in pairs, threes ... tens, equal group	VOCABULARY divided into, left, left over, remainder, grouping, doubling, halving, array row, column number patt	ing, share, share equally, one each, two each, three , division fact, inverse

Appendix 1: Overview of the calculations and the year group in which they are introduced

	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
Addition	Solve problems through practical methods use of numberlines/100 squares etc.	Partition numbers to aid addition start to arrange in columns	Introduce column addition with numbers up to 3 digits and numbers with 1 decimal place	Column method - 4 digits - and numbers with up to 2 decimal places	Column method more than 4 digits	Multi digit calculations
Subtraction	Solve problems through practical methods use of number lines/100 squares etc.	Partition to aid subtraction - use of numberlines and 100 squares	Introduce column subtraction (decomposition) up to 3 digits - and numbers with up to 2 decimal places	Column method 4 digits- and numbers with up to 2 decimal places	Column method more than 4 digits	Multi digit calculations
Multiplication	Solve problems through practical methods and knowledge of tables including using the signs x and = correctly	Use arrays / repeated addition / multiplication facts / practical resources including using the signs \times and $=$ correctly	Efficient written method -2 digit by 1 digit column method $\begin{array}{r} 38 \\ \times \quad 7 \\ \hline 266 \\ \hline 7 \end{array}$	Efficient methods 2 and 3 digit numbers by 1 digit number	4 digit numbers by 1 and 2 digits (long multiplication for 2 digits) Introduce long multiplication	Multiply multi-digit numbers up to 4 digits by a 2 digit whole number using long multiplication
Division	Solve problems through practical methods including using the signs = and : correctly	Use arrays / repeated addition and subtraction / division facts / practical resources including using the signs = and \div correctly	Introduce the efficient method $\begin{array}{r} 12 \\ 4 \longdiv { 4 8 } \end{array}$ No remainders	Secure the efficient method no remainders (Can include decimals)	Divide 4 digit by 1 digit numbers and interpret remainders appropriately for context (fractions or whole number remainders) Money as well	Divide up to 4 digits by a two digit whole number using long division

Appendix 2: Grading of Difficulty for questions

Below is a grid that lays out an order in which questions can be given to children looking at the difficulty of working out each operation.

