All Saints' School Calculation Policy

The following calculation policy is based around the requirements and expectations of the National Curriculum 2014.

Its aim is to provide a smooth progression between year groups and teacher helping children to build on the skills that they develop during their time at All Saints'.

The National Curriculum for mathematics aims to ensure that all pupils:

- become fluent in the fundamentals of mathematics, including through varied and frequent practice with increasingly complex problems over time, so that pupils develop conceptual understanding and the ability to recall and apply knowledge rapidly and accurately
- reason mathematically by following a line of enquiry, conjecturing relationships and generalisations, and developing an argument, justification or proof using mathematical language
- can solve problems by applying their mathematics to a variety of routine and non-routine problems with increasing sophistication, including breaking down problems into a series of simpler steps and persevering in seeking solutions

The National Curriculum 2014 requires all children to master the skills that they are developing before moving onto the next stage of their learning. So whilst the following information will be set out by year group it is important to remember that all children will need to be taught relative to their current level of attainment before moving on to the next objective.

	Addi	ition - Year 3	
Objective	Concrete	Pictorial	Abstract
add with up to three digits, using formal written methods of columnar addition Without Regrouping	Using manipulatives such as place value counters, Cuisenaire rods, place value blocks, Numicon children line up hundreds, tens and ones. H T O O O O O O O O O O O O O O O O O	Children are encouraged to write down the calculation similar to how it been modelled They can then move on to using a layout similar columnar addition They can then move on to using a layout similar columnar addition	They move on to just using the formal method, they may need to use an expanded step before being completely secure with their understanding of the concrete method. 200 + 40 + 5 + 300 + 10 + 3 500 + 50 + 8

With Regrouping

475 + 343 = 818

Once the counters are combined, the children can exchange 10 tens counters for a hundred counter giving them the information they need to complete the addition calculation. Being able to see this in front of them helps in their understanding.

Children are given the opportunity to model the calculation without counters circling the counters and then showing where they can be exchanged

This can then be extended to modelling the written method alongside the calculation Children may require an expanded step before moving onto the concrete method

Children complete the formal method with exchanging where necessary.

Calculations can be provided to the children where exchanging can happen in one or all of the columns. Usually children progress from exchanging with the one to tens to hundreds and then multiple columns.

VOCABULARY

addition add, more, and make, sum, total, altogether, double, near double, half, halve, one more, two more ... ten more ... one hundred more, how many more to make ...? how many more is ...? how much more is ...? equals, is the same as, number bonds/pairs/facts, missing number, tens boundary, hundreds boundary, addend

	Addition - Year 4					
Objective	Concrete	Pictorial	Abstract			
add numbers with up to 4 digits using the formal written method of columnar addition	Using manipulatives such as place value counters, Cuisenaire rods, place value blocks, Numicon children line up hundreds, tens and ones. Th H T O O O O O O O O O O O O O O O O O O	Children are given the opportunity to model the calculation without counters circling the counters and then showing where they can be exchanged to This can then be extended to modelling the written method alongside the calculation	Children complete the formal method with exchanging where necessary. 1445 + 3347 4792 1			
including decimals	T 0 0.1 $\frac{1}{10}$ 0.01 $\frac{1}{100}$ 0.01 $\frac{1}{100}$ 0.01 $\frac{1}{100}$ 0.01 $\frac{1}{100}$ 0.01 $\frac{1}{100}$ 0.00 $\frac{1}{100}$ 0.0	Again children should be encouraged to model the written calculation alongside their working.	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			
		VOCABULARY				

addition add, more, and make, sum, total, altogether, double, near double half, halve one more, two more... ten more... one hundred more how many more to make ...? how many more is ... than ...? how much more is ...? equals, is the same as, number bonds/pairs/facts, missing number, ones boundary, tens boundary, hundreds boundary, thousands boundary, tenths boundary, addend

	Addition - Year 5/6					
Objective	Concrete	Pictorial	Abstract			
add whole numbers with more than 4 digits using formal written methods	See Year 4 and extend columns where necessary	See Year 4 and extend columns where necessary	144 562 + 502 489 547 051 \$\lambda \lambda \lambda \lambda \lambda \lambda \lambda			
add several numbers of increasing complexity, including adding money, measure and decimals with different numbers of decimal points	See Year 4 and extend rows if necessary	See Yr 4 and extend rows here necessary	Children can apply the formal method to suit the needs of the calculation £ 14.45 £ 3.47 + £ 524.89 £ 542.82 XXZ 218.452 73.820 + 1524.800 1817.072 1XZ Children can insert place holders to aid with the lay out of the calculation			

VOCABULARY

addition add, more, and make, sum, total, altogether, double, near double half, halve one more, two more... ten more... one hundred more how many more to make ...? how many more is ...? how much more is ...? equals, is the same as, number bonds/pairs/facts, missing number, ones boundary, tens boundary, hundreds boundary, thousands boundary, etc ... tenths boundary, hundredths boundary, addend

	Subtraction - Year 3					
Objective	Concrete	Pictorial	Abstract			
To subtract numbers with up to three-digits, using formal written methods of columnar subtraction Column subtraction (without exchanging)	Use base 10 or Numicon to model the subtraction 55 – 22	Once children are secure with Base 10 / Numicon and PV counters they can move on to recording pictorially The secure with Base 10 / Numicon and PV counters they can move on to recording pictorially Children are encouraged to write the calculation down alongside their representation They could also draw base ten representations if they wanted to	Children my need to use an expanded step before being completely secure with their understanding of the concrete method. $58-26=32$ $50+8$ $-20+6$ $30+2$ 58 -26 32			

Column subtraction (with exchanging / regrouping)

Model the process of 745 - 317 using base 10 or PV counters. Ensure the language of exchanging an d regrouping is used.

<u>Step 1:</u>

Start with the 1's column. Can 7 be taken from 5 easily? No - then exchange a ten for ten ones and regroup them into the correct column.

<u>Step 2:</u>

Once this step is completed children can subtract / take off the relevant counters from each column.

Carefully chosen questions can extend children to exchanging and regrouping next in the tens column, then in both the tens and ones columns as appropriate.

They could also decompose a number

Children to model using their whiteboards:

<u>Step 1:</u>

Set up calculation

Step 2:

Exchange and regroup 10's for 1's

Step 3:

Cross out ones to indicate subtraction has taken place, write new amount of ones underneath and then focus on tens column

exchanging and regrouping a hundred for ten tens

hundreds column to complete the calculation.

Step 4:

Cross out the tens to show subtraction, write the amount left underneath and then repeat with the

Children my need to use an expanded step before being completely secure with their understanding of the concrete method.

VOCABULARY

minuend, subtrahend, equal to, take, take-away, less, minus, subtract, leaves, distance between, how many more, how many fewer/less than, most, least count back, how many left, how much less is...difference, count on, strategy, partition, tens units, exchange, decomposition, regroup, how many have gone? one less, two less, ten less ... one hundred less how many fewer is ... than ...?

	Subtraction - Year 4						
Objective	Objective Concrete Pictorial						
Subtract numbers with up to 4 digits using the formal written methods appropriate of columnar subtraction where appropriate Year 4 subtraction with up to 4 digits.	See Year 3 with extension into the thousand's column	See Year 3 with extensions into the thousand's columns	2 9 12 5 - 1 5 4 4 1 4 8 1				
Introduce decimal subtraction through context of money	See Year 3 with extension into the tenths and hundredths columns	See Year 3 with extensions into the tenths and hundredths columns	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				

VOCABULARY

minuend, subtrahend, equal to, take, take-away, less, minus, subtract, leaves, distance between, how many more, how many fewer/less than, most, least count back, how many left, how much less is...difference, count on, strategy, partition, tens units, exchange, decomposition, regroup, how many have gone? one less, two less, ten less ... one hundred less how many fewer is ... than ...? Inverse, ones boundary, tens boundary, hundreds boundary, tenths boundary

	Subtraction - Year 5/6					
Objective	Concrete	Pictorial	Abstract			
Subtract with at least 4 digits, including money and measures. Subtract with increasingly large and more complex numbers and decimal values (up to 3 decimal place).	See Year 3 with extensions into the relevant columns where necessary	See Year 3 with extensions into the relevant columns where necessary	2 0 5 · 4 1 9 hg - 8 6 · 2 7 hg When the amount to subtract is different in size then children can put in a 0 to help complete the calculation 1 9 15 · 4 1 9 hg - 8 6 · 2 7 0 hg - 9 1 4 9 kg - 1 9 · 1 4 9 kg			
		VOCABLILABY				

VOCABULARY

minuend, subtrahend, equal to, take, take-away, less, minus, subtract, leaves, distance between, how many more, how many fewer/less than, most, least count back, how many left, how much less is...difference, count on, strategy, partition, tens units, exchange, decomposition, regroup, how many have gone? one less, two less, ten less ... one hundred less how many fewer is ... than ...? Inverse, ones boundary, tens boundary, hundreds boundary etc ... tenths boundary, hundredths boundary

	Multiplication - Year 3					
Objective	Concrete	Pictorial	Abstract			
Multiplying two digit number by a one digit number	Children to make the links between arrays and multiplication building on their knowledge from last year	Children can represent their work with place value counters in a way that they understand.	Children can use the grid method to calculate e.g.			
Grid method progressing to the formal method.	3x14 can be arranged in a grid to make calculating it easier	They can draw the counters using colours to show different amounts or just use the circles in the different columns to show their thinking as shown below	x 20 4 3 60 12			
	They can then make any exchanges that they need to $3 \times 14 = 42$ Children can use place value counters, base 10 or any other resource to calculate groups of a number	Bar Models can also be used as an appropriate representation which may help to cement the relationship with repeated addition and also support learners when solving problems. Proposition 100	Before moving on to the expanded method: $ \begin{array}{c} 2 & 4 \\ X & 3 \\ \hline 1 & 2 \\ 6 & 0 \\ \hline 7 & 2 \end{array} $ then the compact method: $ \begin{array}{c} 2 & 4 \\ X & 3 \\ \hline 7 & 2 \\ X \end{array} $			

When introducing any new calculation method, it is always important to start with questions that involve no regrouping before introducing it slowly and only with one column at a time. This will help to build the children's confidence in the method leading to a more secure understanding.

VOCABULARY

multiplication, multiply, multiplied by, multiple, factor, groups of, times, multiplier, multiplicand, product, once, twice, three times ... ten times repeated addition, array, row, column, number patterns, multiplication table, multiplication fact,

Multiplication - Year 4 Objective Concrete **Pictorial** Abstract Grid method recap Place value counters can be used to explore Children can represent their work with place Children can use the grid method to from Year 3 for 2 digits the calculation. value counters in a way that they calculate e.g. x 1 digit moving on to understand. As the calculation is 126 x 4 then there needs 4 x 124 3 digit x 1 digit to be 4 rows. The number is partitioned and number the rows are created with the place value They can draw the counters using colours to Х 100 20 4 show different amounts or just use the circles counters Multiplying 3-digit 16 4 400 80 in the different columns to show their numbers by 1 digit thinking as shown below (as an extension of what they learnt in Yr 3) 10 10 Multiply two-digit and 400+80+16 = 496 10 10 three-digit numbers 10 10 124 × 4 = 486 (This could be added using the column method by a one-digit number although quick mental additions would be more 4 x 126 20 using formal written efficient) 0000 0000 layout 0000 Any exchanges are then made before adding Before moving on to a more formal up the rows. 0000 method: 10 10 124 10 10 10 10 10 10 The grid method can 4 x 126 (4×4) be used to support 0 80 (20×4) the expanded form 10 10 10 and help children to 10 10 10 400 (100×4) recognise the links 10 10 496 10 10 between the two 4 x 126 then the compact method: Giving the final answer 124 O $4 \times 126 = 504$

The concrete and pictorial methods can also be used to further support the compact method. It is important to remind children to calculate first with the ones column and then move up to help support understanding of the compact method.

<u>Step 1:</u>

Set out the calculations alongside each other There are 3 sets of 174

Step 2:

Make the exchange in the ones column (if needed) and show the link between that and the multiplication calculation in the compact method, recording as necessary

<u>Step 3:</u>

Move on to the tens column and repeat with the exchanges where needed and show the link between that and the multiplication calculation in the compact method recording as necessary

Step 4:

Complete the hundreds column again making the link between the pictorial and the Calculation before recording

Multiplication involving decimals (inc. money)

Multiply decimal up to 2 decimal places by a single digit.

Use manipulatives to calculate the amount. Make exchanges where necessary. Total up the final amount.

Again, use the written example alongside the manipulative wherever possible.

 $£2.32 \times 4 = £9.28$

The grid method could be used to provide extra support however teachers and children must be wary of how the children record the amounts, or convert amounts, to ensure mistakes are not made.

Х	£2	30p	2p
4	£8	120p	8p
		or	
		£1.20	

Teachers to ensure the correct placement of the 4 in terms of a decimal caclulation

VOCABULARY

multiplication, multiply, multiplied by, multiple, factor, groups of, times, multiplier, multiplicand, product, once, twice, three times ... ten times repeated addition, array, row, column, number patterns, multiplication table, multiplication fact, squared, cube, cubed

Multiplication - Year 5/6					
Objective	Concrete	Pictorial	Abstract		
Column multiplication for 3 and 4 digits x 1 digit Multiply numbers up to 4-digits by a one-digit number using the format written method, (including long multiplication for 2-digit numbers – see below)	Children can represent their work with place value counters in a way that they understand. It is important to remind children to calculate first with the ones column and then move up to help support understanding of the compact method. (see Yr 4)	They can draw the counters using colours to show different amounts or just use the circles in the different columns to show their thinking as shown below (as an extension of what they learnt in Yr 4)	Children can use the grid method to calculate e.g. $\begin{array}{c ccccccccccccccccccccccccccccccccccc$		

Column multiplication The grid method can be used to support the Here the rows from the grid method Manipulatives can still be used to support (long multiplication) understanding of the rows alongside the calculations – but should always be used are shown using the brackets. alongside the multiplication model method for long multiplication Eventually these will not be needeed. 2 3 × 1 7 = 3 9 1 20 O (23 × 10) 200 30 21 140 3 4 9 2 3 300 40 7 (349×3) (349 × 20) 800 0 8 20 2 7 120 Children will also complete calculations involving decimals. See how multiplier obeys the value of the column it is in, in relation to the multiplicand.

VOCABULARY

multiplication, multiply, multiplied by, multiple, factor, groups of, times, multiplier, multiplicand, product, once, twice, three times ... ten times repeated addition, array, row, column, number patterns, multiplication table, multiplication fact, squared, cube, cubed

Objective Children can use Numicon/ Base 10/Place value Counters to identify division facts Children can use Numicon/ Base 10/Place value Counters to identify division facts Numicon can be used to support known multiplication facts if children are struggling. Children can use place value counters and then split the number up int 3 groups starting with the 10s. They can exchange if necessary and then split up the remaining ones. This can be a big help when moving onto the short division method Children can use the dots in circles method as well to support but should be encouraged to count in multiples and move on to a more efficient method Children can use the dots in circles method as well to support but should be encouraged to count in multiples and move on to a more efficient method Children can use the dots in circles method as well to support but should be encouraged to count in multiples and move on to a more efficient method Children can use the dots in circles method as well to support but should be encouraged to count in multiples and move on to a more efficient method Children can use the dots in circles method as well to support but should be encouraged to count in multiples and move on to a more efficient method	Division - Year 3					
walue Counters to identify division facts 24 ÷ 4 = 6 Numicon can be used to support known multiplication facts if children are struggling. Children can use place value counters and then split up the necessary and then remaining ones. This can be a big help when moving onto the short division method. The can be a big help when moving onto the short division method. The can be a big help when moving onto the short division method. The can be a big help when moving onto the short division method. The can be a big help when moving onto the short division method. The can be a big help when moving onto the short division method. The can be a big help when moving onto the short division method. The can be a big help when moving onto the short division method. The can be a big help when moving onto the short division method. The can be a big help when moving onto the short division method. The can be a big help when moving onto the short division method. The can be a big help when moving onto the short division method. The can be a big help when moving onto the short division method. The can be a big help when moving onto the short division method. The can be a big help when moving onto the short division method. The can be a big help when moving onto the short division method. The can be a big help when moving onto the short division method. The can be a big help when moving onto the short division method. The can be a big help when move on to a more efficient method. The can be a big help when move on to a more efficient method. The can be a big help when move on to a more efficient method. The can be a big help when move on to a more efficient method. The can be a big help when move on to a more efficient method. The can be a big help when move on to a more efficient method. The can be a big help when move on to a more efficient method. The can be a big help when move on to a more efficient method. The can be a big help when move on to a more efficient method. The can be a big help whe	Objective	Concrete	Pictorial	Abstract		
	known	value Counters to identify division facts 24 ÷ 4 = 6 Numicon can be used to support known multiplication facts if children are struggling. Children can use place value counters and then split the number up int 3 groups starting with the 10s. They can exchange if necessary and then split up the remaining ones. This can be a big help when moving onto the short division method.	Children can use the part – whole model Or draw a number line to help solve the calculation 36 + 3 = 12 Children can use the dots in circles method as well to support but should be encouraged to count in multiples and move on to a more efficient method	no remainder 4 3 2 8 6 Children should be aware that a 0 is used to keep place value, if the number is not divisible.		

dividend, divisor, quotient, division, dividing, divide, divided by, divided into, left, left over, remainder, grouping, sharing, share, share equally, one each, two each, three each ... ten each, group in pairs, threes ... tens, equal groups of, doubling, halving, array row, column number patterns, division fact, inverse,

dividend, divisor, quotient, division, dividing, divide, divided by, divided into, left, left over, remainder, grouping, sharing, share, share equally, one each, two each, three each ... ten each, group in pairs, threes ... tens, equal groups of, doubling, halving, array row, column number patterns, division fact, inverse

	Division - Year 5/6					
Objective	Concrete	Pictorial	Abstract			
divide numbers up to 4 digits by a one-digit number using the formal written method of short division and interpret remainders			Children understand that remainders can be interpreted in a number of ways depending on the context. They can either be a straight remainder Presented as a fraction Or completed as a decimal by extending into decimal places			
			Children should also be made aware of how decimal numbers can also be divided using this method 7 - 6 5 5 3 38 - 32 25			

divide numbers up to 4 digits by a two-digit whole number using the formal written method of long division, and interpret remainders as whole number remainders, fractions, or by rounding, as appropriate for the context

By the time children learn this method they should be secure in their understanding of short division an how to complete calculations quickly and effectively.

When starting to approach Long division starting with a single digit as the divisor can help children become familiar with the method. Taking out the calculation worries can help to make the children more comfortable

VOCABULARY

dividend, divisor, quotient, division, dividing, divide, divided by, divided into, left, left over, remainder, grouping, sharing, share, share equally, one each, two each, three each ... ten each, group in pairs, threes ... tens, equal groups of, doubling, halving, array row, column number patterns, division fact, inverse

Appendix 1: Overview of the calculations and the year group in which they are introduced

	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
Addition	Solve problems	Partition numbers	Introduce column	Column method - 4	Column method	Multi digit
	through practical	to aid addition –	addition with	digits - and	more than 4 digits	calculations
	methods use of	start to arrange in	numbers up to 3	numbers with up to		
	numberlines/100	columns	digits and numbers	2 decimal places		
	squares etc.		with 1 decimal			
			place			
Subtraction	Solve problems	Partition to aid	Introduce column	Column method 4	Column method	Multi digit
	through practical	subtraction - use	subtraction	digits- and	more than 4 digits	calculations
	methods use of	of numberlines and	(decomposition) up	numbers with up to		
	number lines/100	100 squares	to 3 digits – and	2 decimal places		
	squares etc.		numbers with up to			
			2 decimal places			
Multiplication	Solve problems	Use arrays /	Efficient written	Efficient methods	4 digit numbers by	Multiply multi-digit
	through practical	repeated addition	method -2 digit by	2 and 3 digit	1 and 2 digits (long	numbers up to 4
	methods and	/ multiplication	1 digit column	numbers by 1 digit	multiplication for 2	digits by a 2 digit
	knowledge of	facts / practical	method	number	digits)	whole number using
	tables including	resources	38			long multiplication
	using the signs x	including using the	×7		Introduce long	
	and = correctly	signs x and =	<u>266</u>		multiplication	
		correctly	7			
Division	Solve problems	Use arrays /	Introduce the	Secure the	Divide 4 digit by 1	Divide up to 4
	through practical	repeated addition	efficient method	efficient method -	digit numbers and	digits by a two
	methods including	and subtraction /		no remainders	interpret	digit whole number
	using the signs =	division facts /	1 2		remainders	using long division
	and ÷ correctly	practical resources	4 4 8	(Can include	appropriately for	
		including using the	,	decimals)	context (fractions	
		signs = and ÷	No remainders		or whole number	
		correctly			remainders)	
					Money as well	

Appendix 2: Grading of Difficulty for questions

Below is a grid that lays out an order in which questions can be given to children looking at the difficulty of working out each operation.

Addition	Subtraction	Multiplication	Division
1.No carrying e.g.	1. No adjustment e.g.	1. No carrying e.g.	1. Single digit division, no
23 315	47 864	32 44	remainder, no carrying e.g.
+ <u>42</u> + <u>624</u>	- <u>23</u> - <u>621</u>	× <u>3</u> × <u>2</u>	69 ÷ 3 264 ÷ 2
2. Extra digit in answer e.g.	2. Adjustment T to ones e.g.	2. Extra digit in answer e.g.	2. Remainder, no carrying e.g.
94 561	52 432	32 51	68 ÷ 3
+ <u>73</u> + <u>718</u>	- <u>36</u> - <u>217</u>	× <u>4</u> × <u>4</u>	
			3. No remainder, carrying e.g.
3. Carrying ones to T (tens) e.g.	3. Adjustment H to T e.g.	3. Carrying but keeping in same	45 ÷ 3
47 237		decade e.g.	
+ <u>25</u> + <u>516</u>	437 618	23	4. Remainder, carrying e.g.
	- <u>182</u> - <u>217</u>	× <u>4</u>	47 ÷ 3
4. Carrying T to H e.g.			
371 293	4. Adjustment H to T and T to	4. Carrying and going into next	5. Placing of the quotient e.g.
+ <u>485</u> + <u>541</u>	ones	decade e.g.	287 ÷ 7
	432	78 68	
5. Carrying ones to T and T to H	- <u>187</u>	x <u>7</u> x <u>8</u>	6. Noughts in quotient e.g.
e.g.			816 ÷ 4 5608 ÷ 8
376 295	5. Noughts e.g.	5. Noughts e.g.	
+ <u>485</u> + <u>547</u>	470 700 604	202 430	Two-digit division
	- <u>142</u> - <u>236</u> - <u>347</u>	x <u>4</u> x <u>6</u>	7. No remainder e.g.
6. More than two numbers to be			64 ÷ 32 93 ÷ 31
added e.g.		6. Multiplying by multiples of 10	
463		87 416	8. Similar but remainder e.g.
921		× 10 × 60	29 ÷ 13 97 ÷ 31
+ <u>759</u>		A <u>10</u> A <u>10</u>	9. Quotient not so apparent e.g.
1.05		7. Long multiplication e.g.	56 ÷ 22 92 ÷ 41
7. Different numbers of digits e.g.		47 832	
7. Bifferent numbers of digits e.g.		× <u>23</u> × <u>74</u>	10. Placing the quotient e.g.
23 4756		^ <u>23</u>	126 ÷ 21 224 ÷ 32
375 20375			
+ 48 + 752			11. No remainder e.g.
+ 40 + 752			483 ÷ 21 736 ÷ 32
			12.5
			12. Remainder e.g.
			718 ÷ 33
			13. Noughts in quotient e.g. 6834 ÷ 17
			14. Divisors like 29, 39, 48
			15. Divisors like 45, 37, 24, 56
L	1	1	1