Emscote Infant School Calculation Policy

Updated June 2020

This policy supports the White Rose maths scheme used throughout the school.
Progression within each area of calculation is in line with the programmes of study in the 2014 National Curriculum.
This calculation policy should be used to support children to develop a deep understanding of number and calculation. This policy has been designed to teach children through the use of concrete, pictorial and abstract representations.

Concrete Pictorial Abstract

$$
3+1=4
$$

Concrete representation - a pupil is first introduced to an idea or skill by acting it out with real objects. This is a 'hands on' component using real objects and is a foundation for conceptual understanding.

Pictorial representation - a pupil has sufficiently understood the 'hands on' experiences performed and can now relate them to representations, such as a diagram or picture of the problem.

Abstract representation - a pupil is now capable of representing problems by using mathematical notation, for example $12 \times 2=24$.

It is important that conceptual understanding, supported by the use of representation, is secure for all procedures. Reinforcement is achieved by going back and forth between these representations.

Resources Key:

	Addition	Subtraction	Multiplication	Division
$\begin{aligned} & \text { EYFS/ } \\ & \text { Year } 1 \end{aligned}$	Combining two parts to make a whole: part whole model. Starting at the bigger number and counting on- using cubes. Regrouping to make 10 using ten frame.	Taking away ones. Counting back. Find the difference. Part whole model. Make 10 using the ten frame.	Recognising and making equal groups. Doubling. Counting in multiples. Use cubes, Numicon and other objects in the classroom.	Sharing objects into groups. Division as grouping e.g. I have 12 sweets and put them in groups of 3, how many groups? Use cubes and draw round 3 cubes at a time.
Year 2	Adding three single digits. Use of base 10 to combine two numbers.	Counting back. Find the difference. Part whole model. Make 10. Use of base 10.	Arrays- showing commutative multiplication.	Division as grouping. Division within arrays- linking to multiplication. Repeated subtraction.

Reception and Year 1

- Very practical and mental - Lots of counting, songs and games
- Based in play, especially in Reception
- Reception is based on numbers $0-20$ and understanding the concept of these
- Year 1 - counting and recognising up to 100 . Working with 0-40

Resources: objects/counters, Numicon, number lines, fingers, games, 100 squares, computers, sticks and dots, base 10 and our own drawings.

Year 2

- Practical, mental, more written but using informal jottings and methods (NOT the 'old fashioned' methods we all remember)
- Continuation of addition and subtraction, introduction of more formal multiplication and division
- Active Maths lessons are used to support and develop understanding of calculations in a practical and visual way.
Resources: 100 squares, number lines, blank number lines, objects, computers, number fans, Numicon and bar modelling.

Reception Learning Objectives for Addition and Subtraction:

40-60 months statements:

- Finds the total number of items in two groups by counting all of them
- Say the number that is one more than a given number
- Finds one more or one less from a group of up to five objects, then ten objects
- In practical activities and discussion, beginning to use the vocabulary involved in adding and subtracting
- Records using marks that they can interpret and explain
- Begins to identify own mathematical problems based on own interests and fascinations

Current Early Learning Goals:

- Children say which number is one more or less than a given number. Using quantities and objects, they add and subtract two single-digit numbers and count on or back to find the answer

Proposed Early Learning Goals:

- They automatically recall (without reference to rhymes, counting or other aides) number bonds to 5 (including subtraction facts) and some number bonds to 10, including double facts

Reception Learning Objectives for Multiplication and Division:

Current Early Learning Goals:

- They solve problems, including doubling, halving and sharing

Proposed Early Learning Goals:

- Explore and represent patterns within numbers up to 10 , including evens and odds, double facts and how quantities can be distributed equally

Reception Addition

Resources:

Reception Subtraction
Resources:
Vocabulary:

| Number | | 0 | take-away
 subtract
 minus |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| less than | | | |
| fewer | | | |

Introduction:

The children use real objects to see that the quantity of a group can be changed by taking items away. The first, then, now structure can be used to create mathematical stories in meaningful contexts. We encourage the children to count out all of the items at the start, take away the required amount practically and recount to see how many are left. We encourage the children to use 10 frames, number tracks and their fingers.
Taking away ones (1 less)
The children use their counting and comparing skills to find one less than numbers up to 5 . We encourage the children to use a five frame to represent numbers and then make one less. The children can see the link that one less than a number is the next number they say when they are counting backwards. We use songs, stories and games to demonstrate one less.
Part whole model
We use practical resources and the part part whole model to help the children see how subtraction works. We progress to the Bar Model if some children are ready.

Finding the difference
We use the ten frame to support subtraction by taking away.

\qquad

Solve problems using concrete, pictorial images and mathematical stories. For example: Sarah has 5 pencils and John has 3 rubbers. What is the difference in the amount of stationary they have?

Then 2 people got off the bus. Now there are 3 people on the bus.

Use first, then now to tell simple maths stories to practise taking away in familiar contexts.

$8-4=$
\qquad

0	1	2	3	4	5	6	7	3	9	10

Reception Multiplication
Resources:

Introduction:

The children will learn that double means 'twice as many'. They should be given opportunities to build doubles using real objects and mathematical equipment. Building numbers using the pair-wise patterns on 10 frames helps the children to see the doubles.

Doubling

We encourage the children to say the doubles as they build them e.g. Double 2 is 4 . We provide examples of doubles and non-doubles for the children to sort and explain why.

Recognising and making equal groups

There are 4 sweets in each jar. There are 3 jars.
The children can use repeated addition of $4+4+4=12$ and be taught that $3 \times 4=12$

Reception Division

Resources:

Year 1 Learning Objectives in Calculation + - $\mathrm{x} \div$

Year 1 Learning Objectives for Addition and Subtraction:

- Represent and use number bonds and related subtraction facts within 10 (then 20 in the Spring Term)
- Read, write and interpret mathematical statements involving addition (+), subtraction (-) and equals (=) signs
- Add and subtract one-digit numbers to 10, including zero (Autumn Term)
- Add and subtract one-digit and two-digit numbers to 20, including zero (Spring Term)
- Solve one step problems that involve addition and subtraction, using concrete objects and pictorial representations and missing number problems such as 7= \qquad - 9

Year 1 Learning Objectives for Multiplication and Division:

- Count in multiples of twos, fives and tens
- Solve one step problems involving multiplication and division, by calculating the answer using concrete objects, pictorial representations and arrays with the support of the teacher

Year 1 Subtraction

Resources:

Vocabulary:
 take-away

Introduction:

The children are introduced to the language of subtraction rather than the subtraction symbol being explored straight away. 'Taking away' is used in a range of real life contexts such as flying away and eating. The use of zero is important so children know that when nothing is taken away the whole remains the same. First, then, now...story representations can help the children understand the concept of how many left.
Taking away ones
Use physical objects, counters, cubes etc to show how objects can be taken away. Represent this pictorially.
Children also learn to draw 'sticks and dots' to represent the tens and ones and cross off the ones they are taking away.

Part whole model

We use practical resources and the part part whole model to help the children see how subtraction works.
We progress to the Bar Model if some children are ready.

Finding the difference
Compare objects and amounts. Also, lay objects to represent the bar model.

At first there were \qquad birds. Then \qquad flew away. Now there are birds in the tree.
There were 7 birds in a tree and 3 flew away. Complete the sentences.

पाT10
7 'Seven is 3 more than four'
4
WIT

Counting back Using number lines and number tracks. For example: The children start with 5 and count back 3.

Year 1 Multiplication

Year 1 Division
Resources:
Vocabulary:

Year 2 Learning Objectives in Calculation + - $\mathrm{x} \div$

Year 2 Learning Objectives for Addition and Subtraction:

- Recall and use addition and subtraction facts to 20 fluently, and derive and use related facts up to 100
- Add and subtract numbers using concrete objects, pictorial representations, and mentally, including: a two-digit number and ones; and a two-digit number and tens; two two-digit numbers; adding three one-digit numbers
- Show that the addition of two numbers can be done in any order (commutative) and subtraction of one number from another cannot.
- Solve problems with addition and subtraction: using concrete objects and pictorial representations, including those involving numbers, quantities and measures; applying their increasing knowledge of mental and written methods
- Recognise and use the inverse relationship between addition and subtraction and use this to check calculations and solve missing number problems

Year 2 Learning Objectives for Multiplication and Division:

- Recall and use multiplication and division facts for the 2,5 and 10 times tables, including recognising odd and even numbers
- Calculate mathematical statements for multiplication and division within the multiplication tables and write them using the multiplication (x), division (\div) and equals (=) sign.
- Solve problems involving multiplication and division, using materials, arrays, repeated addition, mental methods and multiplication and division facts, including problems in contexts
- Show that multiplication of two numbers can be done in any order (commutative) and division of one number by another cannot

Year 2 Addition

Resources:

Introduction:

Children need to be able to represent numbers to 100 using a range of concrete materials, such as bead strings, Numicon, Dienes equipment etc. Children should also be able to state how a number is made up e.g. 42 as 4 tens and 2 ones or 42 ones. Children should have an understanding of what each digit represents when partitioning a number.

Adding three single digits

Use concrete and pictorial representations to support the children adding three single digit numbers.

Use of base 10 (dienes) to combine two numbers

 Children use Dienes (Base 10) and partitioning to add together 2-digit numbers including an exchange. They will become confident in exchanging 10 ones for one 10. They are encouraged to draw the base 10.
Recall and use addition facts to 20 fluently, and derive and use related facts up to 100

Children apply their understanding of known addition facts to identify all related facts. Showing the link between representation, such as part-whole models and bar models can support and deepen the children's understanding.

Checking calculations

Children need to discuss and share strategies for checking addition and subtraction calculations. Checking calculations is not restricted to using the inverse. Teachers should discuss using concrete resources, number lines and estimating as part of a wide range of checking strategies.

Eva writes this calculation: $18-5=13$
Which of the following could she use to check her work?

$13+5$	$13-5$
$18-13$	$5+13$

Year 2 Subtraction

Resources:

Vocabulary:
take-away
subtract minus less than fewer leave
difference between equals the difference decrease

Introduction:

Just as with addition, children need to have a strong understanding of place value for subtraction. They need to be able to partition twodigit numbers. Number lines and blank number lines can also be used by the children to support their strategies.

Counting back

In order to progress to using number lines more efficiently, they need to be secure in their number bonds.

Part whole model

Showing the link between representations, such as part-whole models and bar models can support and deepen the children's understanding. Children learn to write all the number sentences to show the fact family. E.g. $13+4=17,4+13=17,17-4=13$ and 17-13=4
Find the difference
Children to draw the cubes/other concrete objects which they have used or use the bar model to illustrate what they need to calculate.

Use of base 10

Children use concrete materials and also draw images of the Dienes (Base 10) so they can independently solve subtraction calculations. Children use their knowledge that one ten is the same as ten ones to exchange when crossing a ten in subtraction.

Use the number line to subtract 12 from51

51
Can you subtract the ones first and then thetens? Can you partition the ones to count back to the next tenand then subtract thetens?

Part-whole model

Calculate the difference between 8 and 5:

$$
\begin{aligned}
& 34-2 \\
& \$ 1 x:: ~
\end{aligned}
$$

Year 2 Multiplication

Resources:

lots of

 times multiply groups of double multiplied by the product of equal groups
Introduction:

Children are introduced to the multiplication symbol for the first time. They should link repeated addition and multiplication together. They should also be able to interpret mathematical stories and create their own involving multiplication. The use of concrete resources and pictorial representations is still vital $\ldots \times \ldots=18$ for understanding.
Arrays showing commutative multiplication Pupils should understand that an array can represent different equations and that as multiplication as commutative the order doesn't affect the answer.

Recall and use multiplication facts for the $\mathbf{2 , 5 , 1 0}$ times tables
Children should be comfortable with the concept of multiplication so they can apply this to multiplication tables.
Images as well as number tracks should be used to encourage children to count in $2 \mathrm{~s}, 5 \mathrm{~s}$ and 10 s .

How many wheels are there on five bicycles?

If there are 14 wheels, how many bicycles are there?

Year 2 Division

Resources:

